Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
12 pages, 2960 KiB  
Article
Quantum Yield Enhancement of Carbon Quantum Dots Using Chemical-Free Precursors for Sensing Cr (VI) Ions
by Karthiga Anpalagan, Hong Yin, Ivan Cole, Tian Zhang and Daniel T. H. Lai
Inorganics 2024, 12(4), 96; https://doi.org/10.3390/inorganics12040096 (registering DOI) - 28 Mar 2024
Abstract
Quantum yield illustrates the efficiency that a fluorophore converts the excitation light into fluorescence emission. The quantum yield of carbon quantum dots (CQDs) can be altered via precursors, fabrication conditions, chemical doping, and surface modifications. In this study, CQDs were first fabricated from [...] Read more.
Quantum yield illustrates the efficiency that a fluorophore converts the excitation light into fluorescence emission. The quantum yield of carbon quantum dots (CQDs) can be altered via precursors, fabrication conditions, chemical doping, and surface modifications. In this study, CQDs were first fabricated from whole-meal bread using a chemical-free hydrothermal route, and a low quantum yield (0.81%) was obtained. The combination of whole-meal bread, soybean flour, and lemon juice generated CQDs with almost four folds of enhancement in quantum yield. Detailed characterization suggested that these CQDs were subjected to more complete hydrothermal reactions and had zwitterionic surfaces. The CQDs could selectively detect Cr (VI) ions with a limit of detection (LOD) of 8 ppm. This study shows that the enhancement of the quantum yield of CQDs does not need chemicals, and it is achievable with food precursors. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
21 pages, 5785 KiB  
Article
The Impact of Ar or N2 Atmosphere on the Structure of Bi-Fe-Carbon Xerogel Based Composites as Electrode Material for Detection of Pb2+ and H2O2
by Carmen I. Fort, Mihai M. Rusu, Liviu C. Cotet, Adriana Vulpoi, Milica Todea, Monica Baia and Lucian Baia
Gels 2024, 10(4), 230; https://doi.org/10.3390/gels10040230 (registering DOI) - 28 Mar 2024
Abstract
In this study, bismuth- and iron-embedded carbon xerogels (XG) were obtained using a modified resorcinol formaldehyde sol–gel synthesis method followed by additional enrichment with iron content. Pyrolysis treatment was performed at elevated temperatures under Ar or N2 atmosphere to obtain nanocomposites with [...] Read more.
In this study, bismuth- and iron-embedded carbon xerogels (XG) were obtained using a modified resorcinol formaldehyde sol–gel synthesis method followed by additional enrichment with iron content. Pyrolysis treatment was performed at elevated temperatures under Ar or N2 atmosphere to obtain nanocomposites with different reduction yields (XGAr or XGN). The interest was focused on investigating the extent to which changes in the pyrolysis atmosphere of these nanocomposites impact the structure, morphology, and electrical properties of the material and consequently affect the electroanalytical performance. The structural and morphological particularities derived from X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements revealed the formation of the nanocomposite phases, mostly metal/oxide components. The achieved performances for the two modified electrodes based on XG treated under Ar or N2 atmosphere clearly differ, as evidenced by the electroanalytical parameters determined from the detection of heavy metal cations (Pb2+) or the use of the square wave voltammetry (SWV) technique, biomarkers (H2O2), or amperometry. By correlating the differences obtained from electroanalytical measurements with those derived from morphological, structural, and surface data, a few utmost important aspects were identified. Pyrolysis under Ar atmosphere favors a significant increase in the α-Fe2O3 amount and H2O2 detection performance (sensitivity of 0.9 A/M and limit of detection of 0.17 μM) in comparison with pyrolysis under N2 (sensitivity of 0.5 A/M and limit of detection of 0.36 μM), while pyrolysis under N2 atmosphere leads to an increase in the metallic Bi amount and Pb2+ detection performance (sensitivity of 8.44 × 103 A/M and limit of detection of 33.05 pM) in comparison with pyrolysis under Ar (sensitivity of 6.47·103 A/M and limit of detection of 46.37 pM). Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
16 pages, 514 KiB  
Review
An Integrative Systematic Approach to Supporting Student Wellness: An Applied Case Example
by Kristy L. Brann, Mark Gallagher, Amity Noltemeyer and Kyle Bush
Educ. Sci. 2024, 14(4), 355; https://doi.org/10.3390/educsci14040355 (registering DOI) - 28 Mar 2024
Abstract
As schools work toward addressing the youth mental health crisis, Student Assistance Programs (SAPs) can serve as a service delivery model to proactively offer a continuum of support. A SAP involves education and building awareness, prevention, early identification, referral, intervention, and guided support [...] Read more.
As schools work toward addressing the youth mental health crisis, Student Assistance Programs (SAPs) can serve as a service delivery model to proactively offer a continuum of support. A SAP involves education and building awareness, prevention, early identification, referral, intervention, and guided support services. With the rising mental health need that was exacerbated by COVID-19, describing one district’s efforts can assist other schools in planning their own continuum of support within a SAP. This article provides a case example of one district’s efforts to create a system that integrates universal screening data and school and community support structures supporting students’ wellness. We describe the district’s continuum of support and early identification and intervention efforts, their systematic approach to integrating systems, and their teaming process. We will also report the percentages of students who are identified on wellness benchmarking and screening tools in addition to the percentage referred for additional support. We conclude by reviewing the implications for practice and future research. Full article
Show Figures

Figure 1

Full article ">
15 pages, 593 KiB  
Article
Reduction in Emissions by Massive Solar Plant Integration in the US Power Grid
by Esteban A. Soto, Ebisa Wollega, Alexander Vizcarrondo Ortega, Andrea Hernandez-Guzman and Lisa Bosman
Energies 2024, 17(7), 1611; https://doi.org/10.3390/en17071611 (registering DOI) - 28 Mar 2024
Abstract
Fossil fuels, the predominant energy source in the United States, have been identified as major contributors to environmental pollution through the release of harmful emissions. As a countermeasure, there has been an increasing focus on the exploration and development of cleaner energy alternatives [...] Read more.
Fossil fuels, the predominant energy source in the United States, have been identified as major contributors to environmental pollution through the release of harmful emissions. As a countermeasure, there has been an increasing focus on the exploration and development of cleaner energy alternatives to alleviate the environmental degradation caused by fossil fuels and to satisfy the growing energy needs. This study conducted scenario analyses to evaluate the impact of integrating solar energy into specific US power grids on reducing carbon emissions. The analysis encompassed electrical systems within California, New England, New York, and the Southwest, utilizing datasets from the Energy Information Administration and National Renewable Energy Laboratory. The Energy Information Administration dataset includes information on net generation according to each source and carbon emissions according to fuel type, whereas the National Renewable Energy Laboratory dataset provides hourly projections for 6000 theoretical photovoltaic installations and detailed solar energy output data every five minutes over a year. Our findings indicated a notable decrease in carbon dioxide emissions following the introduction of solar power facilities. The most significant reductions were observed in the Southwest and California, attributed to solar plant integration. Conversely, New York and New England were identified as regions requiring additional policy measures and incentives to meet the emission reduction goals. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization)
Show Figures

Figure 1

Full article ">
16 pages, 10953 KiB  
Article
Detection and Comparison of Volatile Organic Compounds in Four Varieties of Hawthorn Using HS-GC-IMS
by Lijun Zhu, Feilin Ou, Yun Xiang, Bin Wang, Yingchao Mao, Lingfeng Zhu, Qun Zhang and Chang Lei
Separations 2024, 11(4), 100; https://doi.org/10.3390/separations11040100 (registering DOI) - 28 Mar 2024
Abstract
Hawthorn is a type of natural food with significant medicinal and nutritional properties; it has been listed in the “Both Food and Drug” list by the Chinese Ministry of Health Item List since 1997. However, hawthorn varieties have complex origins, and there are [...] Read more.
Hawthorn is a type of natural food with significant medicinal and nutritional properties; it has been listed in the “Both Food and Drug” list by the Chinese Ministry of Health Item List since 1997. However, hawthorn varieties have complex origins, and there are significant differences in the content, type, and medicinal efficacy of the chemically active ingredients in different varieties of hawthorn. This leads to the phenomenon of mixed varieties and substandard products being passed off as high-quality. In this work, by using headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS), we identified and analyzed volatile organic compounds (VOCs) in four varieties of hawthorn, establishing their characteristic fingerprints. As a result, a total of 153 peaks were detected, and 139 VOCs were also identified. As shown by the fingerprint profiles, the different hawthorn samples contained different VOCs. Meanwhile, by using principal component analysis (PCA), Euclidean distance, and partial least-squares discriminant analysis (PLS-DA), the relationship between the VOCs found in the different varieties of hawthorn was revealed. This study developed a simple, fast, accurate, and sensitive method for identifying, tracking, and evaluating hawthorn varieties. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
15 pages, 14956 KiB  
Systematic Review
Reporting Quality and Risk of Bias Analysis of Published RCTs Assessing Anti-CGRP Monoclonal Antibodies in Migraine Prophylaxis: A Systematic Review
by Dimitrios Rikos, Michail Vikelis, Emmanouil V. Dermitzakis, Panagiotis Soldatos, Dimitrios Rallis, Jobst Rudolf, Anna P. Andreou and Andreas A. Argyriou
J. Clin. Med. 2024, 13(7), 1964; https://doi.org/10.3390/jcm13071964 (registering DOI) - 28 Mar 2024
Abstract
Objective: Phase II/III randomized clinical trials (RCTs) are vulnerable to many types of bias beyond randomization. Insights into the reporting quality of RCTs involving migraine patients treated with monoclonal antibodies targeting the calcitonin gene-related peptide system (anti-CGRP MAbs) are currently lacking. Our aim [...] Read more.
Objective: Phase II/III randomized clinical trials (RCTs) are vulnerable to many types of bias beyond randomization. Insights into the reporting quality of RCTs involving migraine patients treated with monoclonal antibodies targeting the calcitonin gene-related peptide system (anti-CGRP MAbs) are currently lacking. Our aim was to analyze the reporting quality of phase II/III RCTs involving migraine patients treated with anti-CGRP MAbs. Methods: A systematic search was performed on the PubMed and EMBASE databases, according to PRISMA guidelines, for relevant RCTs in either episodic or chronic migraine prevention. Additionally, an adapted version of the 2010 CONSORT statement checklist was utilized. The ROBvis online tool was used to document the risk of bias. Results: From the initially identified 179 articles, we finally found 31 RCTs that were eligible for evaluation. The average CONSORT compliance was 88.7% (69.7–100%), while 93.5% (N = 29) of the articles had a compliance greater than 75%. Twenty-eight CONSORT items were reported in more than 75% of the articles. The average compliance of the analyzed RCTs was 93.9% for Galcanezumab, 91.3% for Fremanezumab, followed by 85.4% for Erenumab and Eptinezumab studies. Implementation of the ROB2 tool showed some concerning “missing information” arising from the inadequate reporting. Specifically, 50% of the studies (N = 16) were categorized as having inadequate information regarding the randomization process. Conclusions: Adequate reporting quality was disclosed in the evaluated RCTs with anti-CGRP MAbs in migraine prevention. However, some methodological issues need to be highlighted to be addressed in future studies assessing the efficacy of new molecules targeting CGRP or other candidate pathways implicated in migraine pathophysiology. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">
16 pages, 2619 KiB  
Article
Deciphering Metabolic Pathways in High-Seeding-Density Fed-Batch Processes for Monoclonal Antibody Production: A Computational Modeling Perspective
by Carolin Bokelmann, Alireza Ehsani, Jochen Schaub and Fabian Stiefel
Bioengineering 2024, 11(4), 331; https://doi.org/10.3390/bioengineering11040331 (registering DOI) - 28 Mar 2024
Abstract
Due to their high specificity, monoclonal antibodies (mAbs) have garnered significant attention in recent decades, with advancements in production processes, such as high-seeding-density (HSD) strategies, contributing to improved titers. This study provides a thorough investigation of high seeding processes for mAb production in [...] Read more.
Due to their high specificity, monoclonal antibodies (mAbs) have garnered significant attention in recent decades, with advancements in production processes, such as high-seeding-density (HSD) strategies, contributing to improved titers. This study provides a thorough investigation of high seeding processes for mAb production in Chinese hamster ovary (CHO) cells, focused on identifying significant metabolites and their interactions. We observed high glycolytic fluxes, the depletion of asparagine, and a shift from lactate production to consumption. Using a metabolic network and flux analysis, we compared the standard fed-batch (STD FB) with HSD cultivations, exploring supplementary lactate and cysteine, and a bolus medium enriched with amino acids. We reconstructed a metabolic network and kinetic models based on the observations and explored the effects of different feeding strategies on CHO cell metabolism. Our findings revealed that the addition of a bolus medium (BM) containing asparagine improved final titers. However, increasing the asparagine concentration in the feed further prevented the lactate shift, indicating a need to find a balance between increased asparagine to counteract limitations and lower asparagine to preserve the shift in lactate metabolism. Full article
(This article belongs to the Special Issue Metabolic Modeling and Engineering)
Show Figures

Graphical abstract

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
20 pages, 10669 KiB  
Article
Transcriptome-Wide Identification and Expression Analysis of Genes Encoding Defense-Related Peptides of Filipendula ulmaria in Response to Bipolaris sorokiniana Infection
by Ekaterina A. Istomina, Tatyana V. Korostyleva, Alexey S. Kovtun, Marina P. Slezina and Tatyana I. Odintsova
J. Fungi 2024, 10(4), 258; https://doi.org/10.3390/jof10040258 (registering DOI) - 28 Mar 2024
Abstract
Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The [...] Read more.
Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
22 pages, 6770 KiB  
Article
Dependence of Ships Turning at Port Turning Basins on Clearance under the Ship’s Keel
by Vytautas Paulauskas and Donatas Paulauskas
Sustainability 2024, 16(7), 2819; https://doi.org/10.3390/su16072819 (registering DOI) - 28 Mar 2024
Abstract
Turning ships in port turning basins is an important and responsible operation, mainly involving the ship itself and the port tugboats. Such operations involve many maneuvers that consume a lot of energy (fuel) and emit a lot of emissions. Turning basins in harbors [...] Read more.
Turning ships in port turning basins is an important and responsible operation, mainly involving the ship itself and the port tugboats. Such operations involve many maneuvers that consume a lot of energy (fuel) and emit a lot of emissions. Turning basins in harbors and quay approaches are, in most cases, relatively shallow. This paper examines the turning of ships in port turning basins using harbor tugboats, the effect of shallow depth on ship turning, energy (fuel) consumption and the generation of emissions during such maneuvers of harbor tugboats. This paper presents the developed theoretical models, and the experimental results on theoretical models that were verified on real ships and using calibrated simulators. Discussions and conclusions were prepared on the basis of the research results. The use of the developed methodology makes it possible to increase shipping safety, optimize maneuvers and reduce energy (fuel) consumption when turning ships in the port and, at the same time, reduce the amount of fuel consumed by port tugboats and reduce the number of emissions of tugboats during such operations. Full article
(This article belongs to the Special Issue Sustainable Maritime Transportation)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
9 pages, 2261 KiB  
Article
Morphometric Evaluation of Thoracolumbar Spinal Canal and Cord by Magnetic Resonance Imaging in Normal Small-Breed Dogs
by Gabchol Choi, Myungryul Yang, Seungweon Yang, Sungbeen Park, Suyoung Heo and Namsoo Kim
Animals 2024, 14(7), 1030; https://doi.org/10.3390/ani14071030 (registering DOI) - 28 Mar 2024
Abstract
Thoracolumbar intervertebral disc disease (IVDD) is the most common cause of spinal injury in dogs. MRI has been considered the gold standard for neurologic diagnosis, but studies focusing on the thoracolumbar spinal canal and spinal cord using MRI in small-breed dogs are limited. [...] Read more.
Thoracolumbar intervertebral disc disease (IVDD) is the most common cause of spinal injury in dogs. MRI has been considered the gold standard for neurologic diagnosis, but studies focusing on the thoracolumbar spinal canal and spinal cord using MRI in small-breed dogs are limited. Therefore, this study aimed to establish an MRI reference range for the spinal cord and canal measurements (height, width, cord-to-canal ratio of height, width, cross-sectional area (CSA)) of each intervertebral disc level from T11 to L5 (total of seven levels) on transverse T2-weighted images in normal small-breed dogs. We hypothesized that the spinal cord and spinal canal measurements might vary according to the body weight and age. The width and height of the spinal cord and canal increased as the body weight increased at all levels (p < 0.05). The cord-to-canal ratio of the width showed a negative correlation to the body weight at all levels. The cord-to-canal ratio of the height did not show any correlation to the body weight at all levels. All measurements (height, width, cord-to-canal ratio of height, width, CSA) did not show any statistical correlation between the groups subdivided by age. These measurements could serve as a morphometric baseline for thoracolumbar spinal diseases and clinical research in small-breed dogs. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">
12 pages, 2818 KiB  
Article
Deficiency in DNA Damage Repair Proteins Promotes Prostate Cancer Cell Migration through Oxidative Stress
by Philippa Lantwin, Adam Kaczorowski, Cathleen Nientiedt, Constantin Schwab, Martina Kirchner, Viktoria Schütz, Magdalena G?rtz, Markus Hohenfellner, Anette Duensing, Albrecht Stenzinger and Stefan Duensing
Onco 2024, 4(2), 56-67; https://doi.org/10.3390/onco4020005 (registering DOI) - 28 Mar 2024
Abstract
Introduction: DNA damage repair gene deficiency defines a subgroup of prostate cancer patients with early metastatic progression and unfavorable disease outcome. Whether deficiency in DNA damage repair genes directly promotes metastatic dissemination is not completely understood. Methods: The migratory behavior of prostate cancer [...] Read more.
Introduction: DNA damage repair gene deficiency defines a subgroup of prostate cancer patients with early metastatic progression and unfavorable disease outcome. Whether deficiency in DNA damage repair genes directly promotes metastatic dissemination is not completely understood. Methods: The migratory behavior of prostate cancer cells was analyzed after siRNA-mediated knockdown of DNA damage repair and checkpoint proteins, including BRCA2, ATM, and others, using transwell migration assays, scratch assays and staining for F-actin to ascertain cell circularity. Cells deficient in BRCA2 or ATM were tested for oxidative stress by measuring reactive oxygen species (ROS). The effects of ROS inhibition on cell migration were analyzed using the antioxidant N-acetylcysteine (NAC). The correlation between BRCA2 deficiency and oxidative stress was ascertained via immunohistochemistry for methylglyoxal (MG)-modified proteins in 15 genetically defined primary prostate cancers. Results: Prostate cancer cells showed a significantly increased migratory activity after the knockdown of BRCA2 or ATM. There was a significant increase in ROS production in LNCaP cells after BRCA2 knockdown and in PC-3 cells after BRCA2 or ATM knockdown. Remarkably, the ROS scavenger NAC abolished the enhanced motility of prostate cancer cells after the knockdown of BRCA2 or ATM. Primary prostate cancers harboring genetic alterations in BRCA2 showed a significant increase in MG-modified proteins, indicating enhanced oxidative stress in vivo. Conclusions: Our results indicate that DNA damage repair gene deficiency may contribute to the metastatic dissemination of prostate cancer through enhanced tumor cell migration involving oxidative stress. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
13 pages, 2788 KiB  
Article
Low-Frequency Resonant Magnetoelectric Effect in a Piezopolymer-Magnetoactive Elastomer Layered Structure at Different Magnetization Geometries
by Dmitrii V. Savelev, Dmitri A. Burdin, Leonid Y. Fetisov, Yuri K. Fetisov, Nikolai S. Perov and Liudmila A. Makarova
Polymers 2024, 16(7), 928; https://doi.org/10.3390/polym16070928 (registering DOI) - 28 Mar 2024
Abstract
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a [...] Read more.
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a piezopolymer layer and a magnetic elastomer layer was investigated. The study focused on investigating the dynamic magnetoelectric effect in various configurations of external alternating and constant homogeneous magnetic fields (L-T and T-T configurations). The T-T geometry exhibited a two orders of magnitude higher coefficient of the magnetoelectric effect compared to the L-T geometry. Mechanisms of structure bending in both geometries were proposed and discussed. A theory was put forward to explain the change in the resonance frequency in a uniform external field. A giant value of frequency tuning in a magnetic field of up to 362% was demonstrated; one of the highest values of the magnetoelectric effect yet recorded in polymer multiferroics was observed, reaching up to 134.3 V/(Oe∙cm). Full article
(This article belongs to the Special Issue Magnetic Polymer Materials)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
12 pages, 2130 KiB  
Article
Variability in Pine Pitch Canker Susceptibility among Scots Pine (Pinus sylvestris) Provenances in Eastern Europe
by Kateryna Davydenko, Natalia ?ukaszewska-Skrzypniak, Katarzyna Sadowska, Justyna Anna Nowakowska, Kristina Raitelaityt?, Svetlana Markovskaja, Daiva Burokien?, Olena Shcherbak, Jorge Martín-García, Julio Javier Diez Casero, Tom Hsiang and Tomasz Oszako
Forests 2024, 15(4), 613; https://doi.org/10.3390/f15040613 (registering DOI) - 28 Mar 2024
Abstract
Pine pitch canker, caused by the ascomycete Fusarium circinatum, poses a substantial threat to pine trees and Douglas firs (Pseudotsuga menziesii), and has been identified as a pervasive issue in forests and nurseries worldwide, particularly in regions where susceptible conifers [...] Read more.
Pine pitch canker, caused by the ascomycete Fusarium circinatum, poses a substantial threat to pine trees and Douglas firs (Pseudotsuga menziesii), and has been identified as a pervasive issue in forests and nurseries worldwide, particularly in regions where susceptible conifers are cultivated. Given its prevalence in the Iberian Peninsula, assessments of the susceptibility of diverse European provenances of Scots pine (Pinus sylvestris)—specifically those from Poland, Lithuania, and Ukraine—have been conducted. Preliminary evaluations of Polish provenances have raised concerns about the potential threat to Scots pine stands in Poland posed by pitch canker. Under controlled conditions, we examined the impact of F. circinatum inoculation on the survival of seeds and seedlings from ten provenances of Scots pine. In response, the initial assessment of F. circinatum pathogenicity was undertaken in a controlled greenhouse environment. This evaluation uncovered a heightened susceptibility of pine seedlings to pitch canker among the tested provenances. Notably, one Lithuanian provenance demonstrated superior resistance to pitch canker, while two Polish provenances exhibited a higher prevalence of symptomless seedlings. These findings underscore the need for further exploration and identification of resilient individuals within these provenances, offering valuable insights for developing strategies to mitigate the impact of pitch canker on Scots pine in Europe. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">
18 pages, 1795 KiB  
Article
Optimization of Online Soluble Solids Content Detection Models for Apple Whole Fruit with Different Mode Spectra Combined with Spectral Correction and Model Fusion
by Yang Li, Yankun Peng, Yongyu Li, Tianzhen Yin and Bingwei Wang
Foods 2024, 13(7), 1037; https://doi.org/10.3390/foods13071037 (registering DOI) - 28 Mar 2024
Abstract
Soluble solids content (SSC) is one of the main quality indicators of apples, and it is important to improve the precision of online SSC detection of whole apple fruit. Therefore, the spectral pre-processing method of spectral-to-spectral ratio (S/S), as well as multiple characteristic [...] Read more.
Soluble solids content (SSC) is one of the main quality indicators of apples, and it is important to improve the precision of online SSC detection of whole apple fruit. Therefore, the spectral pre-processing method of spectral-to-spectral ratio (S/S), as well as multiple characteristic wavelength member model fusion (MCMF) and characteristic wavelength and non-characteristic wavelength member model fusion (CNCMF) methods, were proposed for improving the detection performance of apple whole fruit SSC by diffuse reflection (DR), diffuse transmission (DT) and full transmission (FT) spectra. The modeling analysis showed that the S/S- partial least squares regression models for all three mode spectra had high prediction performance. After competitive adaptive reweighted sampling characteristic wavelength screening, the prediction performance of all three model spectra was improved. The particle swarm optimization–extreme learning machine models of MCMF and CNCMF had the most significant enhancement effect and could make all three mode spectra have high prediction performance. DR, DT, and FT spectra all had some prediction ability for apple whole fruit SSC, with FT spectra having the strongest prediction ability, followed by DT spectra. This study is of great significance and value for improving the accuracy of the online detection model of apple whole fruit SSC. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">
36 pages, 9111 KiB  
Article
Examined in Theory—Applicable in Practice: Potentials of Sustainable Industrial Heritage Conservation in a Contemporary Context—The Case of Belgrade
by Marko Nikoli?, Jelena ??eki?, Bo?ko Drobnjak and Ena Taka?
Sustainability 2024, 16(7), 2820; https://doi.org/10.3390/su16072820 (registering DOI) - 28 Mar 2024
Abstract
The industrial heritage of the city of Belgrade is the focus of this research, which highlights the possibilities of preserving industrial heritage from the perspective of a contemporary context and sustainable development. Guided by theoretical principles on the preservation of cultural and industrial [...] Read more.
The industrial heritage of the city of Belgrade is the focus of this research, which highlights the possibilities of preserving industrial heritage from the perspective of a contemporary context and sustainable development. Guided by theoretical principles on the preservation of cultural and industrial heritage, their values, authenticity and spirit of place, as well as the idea of the necessity of integrating industrial heritage into the contemporary context, this paper aims to examine the possibilities for the preservation of industrial heritage following theoretically established principles, with the introduction of new uses and sustainable solutions. The analysis of the case studies of Belgrade’s industrial heritage presented in this paper results from research conducted by the teachers, associates and students of the University of Belgrade, Faculty of Architecture. The research focuses on the possibilities of translating the principles of preserving cultural and industrial heritage from their theoretical definition to practical application. The students’ conceptual solutions for protection, revitalisation and presentation of the analysed case studies represent the research results. An important aspect of this paper is defining the criteria for valorising students’ conceptual solutions, which are aligned with the principles of preserving cultural heritage and establishing sustainable development. The valorisation of students’ conceptual solutions through a defined set of criteria indicates real possibilities for the simultaneous preservation of all the values of industrial heritage and its transformation into a social, ecological and economic resource of the contemporary city. Full article
(This article belongs to the Special Issue Sustainable Conservation of Urban and Cultural Heritage)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
16 pages, 4384 KiB  
Article
Enhancing the Tribological Properties of Low-Density Polyethylene Using Hard Carbon Microfillers
by Samuel Solomon, Rachel Hall, Jibao He, Vijay John and Noshir Pesika
Materials 2024, 17(7), 1536; https://doi.org/10.3390/ma17071536 (registering DOI) - 28 Mar 2024
Abstract
The application of low-density polyethylene (LDPE) has been confined to packaging applications due to its inadequate mechanical and tribological characteristics. We propose enhancing LDPE by integrating hard carbon spheres (CSs) to improve its strength, frictional characteristics, and wear resistance. LDPE/CS composites were created [...] Read more.
The application of low-density polyethylene (LDPE) has been confined to packaging applications due to its inadequate mechanical and tribological characteristics. We propose enhancing LDPE by integrating hard carbon spheres (CSs) to improve its strength, frictional characteristics, and wear resistance. LDPE/CS composites were created by blending LDPE with varying CS amounts (0.5–8 wt.%). Analysis using scanning electron microscopy and Raman spectroscopy confirmed CS presence in the LDPE matrix, with X-ray diffraction showing no microstructural changes post-blending. Thermal characterization exhibited notable improvements in thermal stability (~4%) and crystallinity (~7%). Mechanical properties such as hardness and Young’s modulus were improved by up to 4% and 24%, respectively. Tribological studies on different composite samples with varying surface roughness under various load and speed conditions revealed the critical role of surface roughness in reducing friction by decreasing real contact area and adhesive interactions between asperities. Increased load and speed amplified shear stress on asperities, possibly leading to deformation and failure. Notably, integrating CSs into LDPE, starting at 1 wt.%, effectively reduced friction and wear. The composite with the highest loading (8 wt.%) displayed the most significant tribological enhancement, achieving a remarkable 75% friction reduction and a substantial 78% wear reduction. Full article
(This article belongs to the Special Issue Research on Tribological Coatings)
Show Figures

Graphical abstract

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
13 pages, 2891 KiB  
Article
Enhanced Stability of Dimethyl Ether Carbonylation through Pyrazole Tartrate on Tartaric Acid-Complexed Cobalt–Iron-Modified Hydrogen-Type Mordenite
by Guangtao Fu and Xinfa Dong
Molecules 2024, 29(7), 1510; https://doi.org/10.3390/molecules29071510 (registering DOI) - 28 Mar 2024
Abstract
In this study, pyrazole tartrate (Pya·DL) and tartaric acid (DL) complexed with cobalt–iron bimetallic modified hydrogen-type mordenite (HMOR) were prepared using the ion exchange method. The results demonstrate that the stability of the dimethyl ether (DME) carbonylation reaction to methyl acetate (MA) was [...] Read more.
In this study, pyrazole tartrate (Pya·DL) and tartaric acid (DL) complexed with cobalt–iron bimetallic modified hydrogen-type mordenite (HMOR) were prepared using the ion exchange method. The results demonstrate that the stability of the dimethyl ether (DME) carbonylation reaction to methyl acetate (MA) was significantly improved after the introduction of Pya·DL to HMOR. The Co∙Fe∙DL-Pya·DL-HMOR (0.8) sample exhibited sustainable stability within 400 h DME carbonylation, exhibiting a DME conversion rate of about 70% and MA selectivity of above 99%. Through modification with the DL-complexed cobalt–iron bimetal, the dispersion of cobalt–iron was greatly enhanced, leading to the formation of new metal Lewis acidic sites (LAS) and thus a significant improvement in catalysis activity. Pya·DL effectively eliminated non-framework aluminum in HMOR, enlarged its pore size, and created channels for carbon deposition diffusion, thereby preventing carbon accumulation and pore blockage. Additionally, Pya·DL shielded the Bronsted acid sites (BAS) in the 12 MR channel, effectively suppressing the side reactions of carbon deposition and reducing the formation of hard carbon deposits. These improvements collectively contribute to the enhanced stability of the DME carbonylation reaction. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
16 pages, 5482 KiB  
Review
A Needle in a Cosmic Haystack: A Review of FRB Search Techniques
by Kaustubh M. Rajwade and Joeri van Leeuwen
Universe 2024, 10(4), 158; https://doi.org/10.3390/universe10040158 (registering DOI) - 28 Mar 2024
Abstract
Ephemeral Fast Radio Bursts (FRBs) must be powered by some of the most energetic processes in the Universe. That makes them highly interesting in their own right, and as precise probes for estimating cosmological parameters. This field thus poses a unique challenge: FRBs [...] Read more.
Ephemeral Fast Radio Bursts (FRBs) must be powered by some of the most energetic processes in the Universe. That makes them highly interesting in their own right, and as precise probes for estimating cosmological parameters. This field thus poses a unique challenge: FRBs must be detected promptly and immediately localised and studied based only on that single millisecond-duration flash. The problem is that the burst occurrence is highly unpredictable and that their distance strongly suppresses their brightness. Since the discovery of FRBs in single-dish archival data in 2007, detection software has evolved tremendously. Pipelines now detect bursts in real time within a matter of seconds, operate on interferometers, buffer high-time and frequency resolution data, and issue real-time alerts to other observatories for rapid multi-wavelength follow-up. In this paper, we review the components that comprise a FRB search software pipeline, we discuss the proven techniques that were adopted from pulsar searches, we highlight newer, more efficient techniques for detecting FRBs, and we conclude by discussing the proposed novel future methodologies that may power the search for FRBs in the era of big data astronomy. Full article
(This article belongs to the Special Issue New Insights in Fast Radio Bursts)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
16 pages, 1655 KiB  
Review
The Role of Brachytherapy Alone and in Combined Treatment of Esophageal Cancer—A Review
by Pawe? Cisek, Aleksander Str?k, Paulina Stachyra-Strawa, Andrzej Majdan and Ludmi?a Grzybowska-Szatkowska
Appl. Sci. 2024, 14(7), 2840; https://doi.org/10.3390/app14072840 (registering DOI) - 28 Mar 2024
Abstract
Every year, over 600,000 new cases of esophageal cancer are registered worldwide. Treatment depends on the stage of the disease. In the early stages, surgical treatment is the basis (T1–T2 lesion < 3 cm, N0M0), while in more advanced stages, surgical treatment is [...] Read more.
Every year, over 600,000 new cases of esophageal cancer are registered worldwide. Treatment depends on the stage of the disease. In the early stages, surgical treatment is the basis (T1–T2 lesion < 3 cm, N0M0), while in more advanced stages, surgical treatment is preceded by radiochemotherapy or only radiochemotherapy is used. In the case of generalized disease, the main treatments used are systemic treatments of chemotherapy, immunotherapy and palliative teleradiotherapy or brachytherapy. Brachytherapy can be used at virtually any stage of disease, both as a radical treatment and as a palliative treatment. This paper presents the possibilities of using brachytherapy at various stages of esophageal cancer treatment. Particular attention was paid to the role of combining brachytherapy and immunotherapy and the possibility of an abscopal effect. Full article
(This article belongs to the Special Issue Novel Approaches in Radio- and Chemotherapy and Clinical Applications)
Show Figures

Figure 1

Full article ">Full article ">Full article ">
22 pages, 2300 KiB  
Review
Yeast Bioflavoring in Beer: Complexity Decoded and Built up Again
by Chiara Nasuti and Lisa Solieri
Fermentation 2024, 10(4), 183; https://doi.org/10.3390/fermentation10040183 (registering DOI) - 28 Mar 2024
Abstract
Yeast is a powerful bioflavoring platform, suitable to confer special character and complexity to beer aroma. Enhancing yeast bioflavoring represents a chance for the brewing production chain to diversify its product portfolio and to increase environmental sustainability in the era of climate change. [...] Read more.
Yeast is a powerful bioflavoring platform, suitable to confer special character and complexity to beer aroma. Enhancing yeast bioflavoring represents a chance for the brewing production chain to diversify its product portfolio and to increase environmental sustainability in the era of climate change. In flavor compound metabolism, multiple genes encoding biosynthetic enzymes and the related regulatory factors are still poorly known, but significant advances have been recently made to dissect gene contribution in flavor molecule production. Furthermore, causative mutations responsible for the huge strain diversity in yeast bioflavoring aptitude have been recently disclosed. This review covers the most recent advances in the genetics of yeast bioflavoring, with special regards to higher alcohols, esters, monoterpene alcohols, thiols, and phenolic derivatives of hydroxycinnamic acids. We also critically discussed the most significant strategies to enhance yeast bioflavoring, including bioprospecting for novel Saccharomyces and non-Saccharomyces strains, whole-genome engineering, and metabolic engineering. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">
10 pages, 1732 KiB  
Article
Features of Processes for Preparation and Performance of Foamed Lightweight Soil with Steel Slag Micronized Powder and Granulated Blast Furnace Slag
by Hao Liu, Jixin Li, Qiqing He, Zhixiong Yang, Longfan Peng, Yuan Li and Gaoke Zhang
Processes 2024, 12(4), 678; https://doi.org/10.3390/pr12040678 (registering DOI) - 28 Mar 2024
Abstract
Steel slag micronized powder, granulated blast furnace slag, and cement were used as cementitious materials to prepare a foamed lightweight soil for roadbed filling to reduce the settlement and additional stress of the foundation and to solve the environmental problems caused by the [...] Read more.
Steel slag micronized powder, granulated blast furnace slag, and cement were used as cementitious materials to prepare a foamed lightweight soil for roadbed filling to reduce the settlement and additional stress of the foundation and to solve the environmental problems caused by the storage of large amounts of steel slag. However, the instability of steel slag and the multi-angular nature of its surface limit the resource utilization of steel slag. Currently, concrete technology is unable to achieve a large amount of steel slag. Therefore, it is necessary to deeply explore the influence of steel slag content and the specific surface area of steel slag on the working performance, compressive strength, durability, and micro-mechanism of foam light soil. Through the modification of steel slag and the improvement of the production process, the preparation of foam light soil with a large amount of steel slag can be realized. In this study, the foamed lightweight soil with 1.0 Mpa was prepared by cementitious materials composed of 40% cement and 60% multi-mixture of steel slag micronized powder and granulated blast furnace slag. The study of SEM images and BET demonstrated that the larger specific surface area of steel slag powder was more conducive to improving the durability of the foamed lightweight soil. Meanwhile, XRD analyses confirmed that the reactions of f-CaO and f-MgO in steel slag were slowly released in the porous foamed lightweight soil system, which compensated for the shrinkage properties of porous materials. When the SSMP content was 0%, the shrinkage rate was 2.34 × 10−3, while when the SSMP content was 60%, the shrinkage rate was only 0.54 × 10−3. Furthermore, our study of the hydration process of samples indicated that the strong alkalinity of steel slag micronized powder hydration was helpful to stimulate the potential activity of the slag powder, which was beneficial to the improvement of the compressive strength of foamed lightweight soil. Thus, this study provides a valuable idea for reducing the settlement and additional stress of the original foundation and for solving the environmental problems caused by a large amount of steel slag storage. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">
14 pages, 3506 KiB  
Article
Catalytic Pyrolysis of Naomaohu Coal Using Combined CaO and Ni/Olivine Catalysts for Simultaneously Improving the Tar and Gas Quality
by Yalkunjan Tursun, Ke Wang, Runxiao Yi, Hairat Abduhani, Zhenghua Dai, Mei Zhong, Lijun Jin, Jian Li and Yang Liu
Energies 2024, 17(7), 1613; https://doi.org/10.3390/en17071613 (registering DOI) - 28 Mar 2024
Abstract
Catalytic pyrolysis of low-rank coal is currently an effective method for producing high-quality tar and gas. In this study, catalytic upgrading of volatiles from Naomaohu (NMH) coal pyrolysis has been conducted in a two-stage fixed-bed reactor using combined CaO and Ni/olivine (Ni-loaded olivine) [...] Read more.
Catalytic pyrolysis of low-rank coal is currently an effective method for producing high-quality tar and gas. In this study, catalytic upgrading of volatiles from Naomaohu (NMH) coal pyrolysis has been conducted in a two-stage fixed-bed reactor using combined CaO and Ni/olivine (Ni-loaded olivine) catalysts. The effect of catalyst distribution modes and catalytic temperature on the tar and gas quality has been investigated. Simulated distillation and GC-MS analysis have been used to investigate the distribution of tar components. The results indicated that the light oil fraction in tar dramatically increased due to the combination of CaO and Ni/olivine. The CaO-Ni/olivine mode is especially better compared to the layouts of the Ni/olivine-CaO mode and the mixed mode. The CaO-Ni/olivine mode ensures a higher light fraction in tar at 69.3% and a light oil fraction at 29.8% at a catalytic temperature of 450 °C, while the heavy tar fraction decreased to 30.7%. Meanwhile, the contents of benzene (heteroatomic substituents) in tar significantly increased from 2.55% to 6.45% compared with the blank test. In this scenario, CaO breaks down macromolecular compounds in tar and cleaves long-chain esters to produce aliphatic hydrocarbons. These hydrocarbons are then dehydrogenated to produce lighter aromatic hydrocarbons over the CaO surface. Subsequently, the volatiles pass through the Ni/olivine catalysis, where ether compounds are produced by means of dehydration reactions. In addition, the CaO absorbs the CO2 in the pyrolysis gas, leading to an elevation of CH4 and H2 concentration. Particularly, the concentration of H2 significantly increased from 16.2% to 30.37%, while the concentration of CO2 significantly decreased from 37.9% to 10.57%. These findings suggest that the usage of combined CaO and Ni/olivine catalysts is beneficial for improving both the tar and gas quality. Full article
(This article belongs to the Section I3: Energy Chemistry)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
12 pages, 2743 KiB  
Article
Exploring Immersion Coating as a Cost-Effective Method for Small-Scale Production of Enteric-Coated Gelatin Capsules
by Beatrice Sabbatini, Diego Romano Perinelli, Giovanni Filippo Palmieri, Marco Cespi and Giulia Bonacucina
Pharmaceuticals 2024, 17(4), 433; https://doi.org/10.3390/ph17040433 (registering DOI) - 28 Mar 2024
Abstract
The coating process for solid dosage forms is widely used in the pharmaceutical industry but presents challenges for small-scale production, needed in personalized medicine and clinical or galenic settings. This study aimed to evaluate immersion coating, a cost-effective small-scale method, for enteric-coated gelatin [...] Read more.
The coating process for solid dosage forms is widely used in the pharmaceutical industry but presents challenges for small-scale production, needed in personalized medicine and clinical or galenic settings. This study aimed to evaluate immersion coating, a cost-effective small-scale method, for enteric-coated gelatin capsules using standard equipment. Two enteric coating polymers and different polymer concentrations were tested, along with API solubility. Results were compared with commercially available enteric capsule shells. Successful preparation of enteric coating capsules via immersion necessitates a comprehensive grasp of API and enteric polymer behavior. However, utilizing commercially available enteric capsule shells does not guarantee ease or robustness, as their efficacy hinges on the attributes of the active ingredient and excipients. Notably, coating with Eudragit S100 stands out for its superior process robustness, requiring minimal or no development time, thus representing the best option for small-scale enteric capsule production. Full article
Show Figures

Graphical abstract

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news