Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
18 pages, 5179 KiB  
Article
Sea Cucumber and Blueberry Extracts Suppress Inflammation and Reduce Acute Lung Injury through the Regulation of NF-κB/MAPK/JNK Signaling Pathway in Lipopolysaccharide-Treated C57BL/6 Mice
by Oladapo F. Fagbohun, Wasitha P. D. W. Thilakarathna, Juan Zhou, Christian Lehmann, Guangling Jiao and H. P. Vasantha Rupasinghe
Molecules 2024, 29(7), 1511; https://doi.org/10.3390/molecules29071511 (registering DOI) - 28 Mar 2024
Abstract
Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa [...] Read more.
Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI. Full article
(This article belongs to the Special Issue Drug Candidates for Inflammatory Diseases)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
26 pages, 768 KiB  
Article
Polynomial Intermediate Checksum for Integrity under Releasing Unverified Plaintext and Its Application to COPA
by Ping Zhang
Mathematics 2024, 12(7), 1011; https://doi.org/10.3390/math12071011 (registering DOI) - 28 Mar 2024
Abstract
COPA, introduced by Andreeva et al., is the first online authenticated encryption (AE) mode with nonce-misuse resistance, and it is covered in COLM, which is one of the final CAESAR portfolios. However, COPA has been proven to be insecure in the releasing unverified [...] Read more.
COPA, introduced by Andreeva et al., is the first online authenticated encryption (AE) mode with nonce-misuse resistance, and it is covered in COLM, which is one of the final CAESAR portfolios. However, COPA has been proven to be insecure in the releasing unverified plaintext (RUP) setting. This paper mainly focuses on the integrity under RUP (INT-RUP) defect of COPA. Firstly, this paper revisits the INT-RUP security model for adaptive adversaries, investigates the possible factors of INT-RUP insecurity for “Encryption-Mix-Encryption”-type checksum-based AE schemes, and finds that these AE schemes with INT-RUP security vulnerabilities utilize a common poor checksum technique. Then, this paper introduces an improved checksum technique named polynomial intermediate checksum (PIC) for INT-RUP security and emphasizes that PIC is a sufficient condition for guaranteeing INT-RUP security for “Encryption-Mix-Encryption”-type checksum-based AE schemes. PIC is generated by a polynomial sum with full terms of intermediate internal states, which guarantees no information leakage. Moreover, PIC ensures the same level between the plaintext and the ciphertext, which guarantees that the adversary cannot obtain any useful information from the unverified decryption queries. Again, based on PIC, this paper proposes a modified scheme COPA-PIC to fix the INT-RUP defect of COPA. COPA-PIC is proven to be INT-RUP up to the birthday-bound security if the underlying primitive is secure. Finally, this paper discusses the properties of COPA-PIC and makes a comparison for AE modes with distinct checksum techniques. The proposed work is of good practical significance. In an interactive system where two parties communicate, the receiver can effectively determine whether the information received from the sender is valid or not, and thus perform the subsequent operation more effectively. Full article
(This article belongs to the Special Issue Trends in Cryptography and Information Security)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
13 pages, 6231 KiB  
Case Report
Ultrasound–Histopathological Presentation of Thyroid and Ovary Lesions in Adolescent Patients with DICER1 Syndrome: Case Reports and Literature Overview
by Dominika Janu?, Monika Kujdowicz, Konrad Kaleta, Kamil Mo?d?eń, Jan Radliński, Anna Taczanowska-Niemczuk, Aleksandra Kiszka-Wi?koj?, Marcin Ma?lanka, Wojciech Górecki and Jerzy B. Starzyk
Children 2024, 11(4), 403; https://doi.org/10.3390/children11040403 (registering DOI) - 28 Mar 2024
Abstract
Background: DICER1, a cancer predisposition syndrome (CPS), seems to escape timely diagnosis in pediatric patients. Case report 1: A 16-year-old female patient was referred to the endocrinology ward due to a large goiter. Her medical history indicated normal sexual maturation, with menarche occurring [...] Read more.
Background: DICER1, a cancer predisposition syndrome (CPS), seems to escape timely diagnosis in pediatric patients. Case report 1: A 16-year-old female patient was referred to the endocrinology ward due to a large goiter. Her medical history indicated normal sexual maturation, with menarche occurring at 13.5 years. Over the past 2.5 years, she had developed pronounced androgenic symptoms, including a deepened male voice; facial, back, and neckline acne; hirsutism; and menstrual irregularities leading to secondary amenorrhea. A thyroid ultrasound identified a multinodular goiter (MNG) with cystic–solid lesions containing calcifications. An abdominal ultrasound identified a 5.7 × 6.9 cm solid mass in the right adnexal region, displacing the uterus to the left. Histopathological examination confirmed a Sertoli–Leydig cell tumor. The patient was subjected to a total thyroidectomy. Histopathology revealed benign follicular cell-derived neoplasms. Thyroid follicular nodular disease (TFND) was diagnosed bilaterally. DNA analysis using NGS, confirmed via the Sanger method, revealed a pathogenic heterozygotic variant c.2953C>T [p.Gln985*] in exon 18 of the DICER1 gene. Case report 2: A 12-year-old male patient was admitted to the pediatric surgery unit due to a 33 mL goiter. A month prior to his admission, the patient discovered a palpable nodule in his neck, accompanied by hoarseness. An ultrasound revealed MNG. Molecular analysis revealed a pathogenic heterozygotic variant c.2782C>T [p.Gln928*] in exon 17 of the DICER1 gene. Subsequently, a total thyroidectomy was performed, and histopathological examination revealed TFND bilaterally. Conclusions: Recent advances in genetic evaluation and in histological approaches indicate that MNG/TFND, although rare in the pediatric population, when accompanied by characteristic ultrasound and histopathological features, and by additional features such as androgenization, may warrant assessment also of the DICER1 gene within CPS molecular panel screening. Full article
(This article belongs to the Special Issue Endocrine Diseases in Pediatrics: Diagnosis and Treatment)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">
13 pages, 3336 KiB  
Article
Biological Activities of Deer Antler-Derived Peptides on Human Chondrocyte and Bone Metabolism
by Tsung-Jung Ho, Wan-Ting Tsai, Jia-Ru Wu and Hao-Ping Chen
Pharmaceuticals 2024, 17(4), 434; https://doi.org/10.3390/ph17040434 (registering DOI) - 28 Mar 2024
Abstract
Orally administered “tortoiseshell and deer antler gelatin” is a common traditional medicine for patients with osteoporosis or osteoarthritis. From the pepsin-digested gelatin, we previously isolated and identified the osteoblast-stimulating pentapeptide, TSKYR. Its trypsin digestion products include the dipeptide YR, enhancing calcium ion uptake, [...] Read more.
Orally administered “tortoiseshell and deer antler gelatin” is a common traditional medicine for patients with osteoporosis or osteoarthritis. From the pepsin-digested gelatin, we previously isolated and identified the osteoblast-stimulating pentapeptide, TSKYR. Its trypsin digestion products include the dipeptide YR, enhancing calcium ion uptake, and tripeptide TSK, resulting in remarkable 30- and 50-fold increases in mineralized nodule area and density in human osteoblast cells. These peptides were chemically synthesized in this study. The composition of deer antler preparations comprises not only proteins and peptides but also a significant quantity of metal ion salts. By analyzing osteoblast growth in the presence of peptide YR and various metal ions, we observed a synergistic effect of calcium and strontium on the effects of YR. Those peptides could also stimulate the growth of C2C12 skeletal muscle cells and human chondrocytes, increasing collagen and glycosaminoglycan content in a three-dimensional environment. The maintenance of bone homeostasis relies on a balance between osteoclasts and osteoblasts. Deer antler peptides were observed to inhibit osteoclast differentiation, as evidenced by ROS generation, tartrate-resistant acid phosphatase (TRACP) activity assays, and gene expression in RAW264.7 cells. In summary, our findings provide a deep understanding of the efficacy of this folk medicine. Full article
Show Figures

Graphical abstract

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
16 pages, 10654 KiB  
Review
Strategies for Enhancing the Stability of Lithium Metal Anodes in Solid-State Electrolytes
by Hanbyeol Lee, Taeho Yoon and Oh B. Chae
Micromachines 2024, 15(4), 453; https://doi.org/10.3390/mi15040453 (registering DOI) - 28 Mar 2024
Abstract
The current commercially used anode material, graphite, has a theoretical capacity of only 372 mAh/g, leading to a relatively low energy density. Lithium (Li) metal is a promising candidate as an anode for enhancing energy density; however, challenges related to safety and performance [...] Read more.
The current commercially used anode material, graphite, has a theoretical capacity of only 372 mAh/g, leading to a relatively low energy density. Lithium (Li) metal is a promising candidate as an anode for enhancing energy density; however, challenges related to safety and performance arise due to Li’s dendritic growth, which needs to be addressed. Owing to these critical issues in Li metal batteries, all-solid-state lithium-ion batteries (ASSLIBs) have attracted considerable interest due to their superior energy density and enhanced safety features. Among the key components of ASSLIBs, solid-state electrolytes (SSEs) play a vital role in determining their overall performance. Various types of SSEs, including sulfides, oxides, and polymers, have been extensively investigated for Li metal anodes. Sulfide SSEs have demonstrated high ion conductivity; however, dendrite formation and a limited electrochemical window hinder the commercialization of ASSLIBs due to safety concerns. Conversely, oxide SSEs exhibit a wide electrochemical window, but compatibility issues with Li metal lead to interfacial resistance problems. Polymer SSEs have the advantage of flexibility; however their limited ion conductivity poses challenges for commercialization. This review aims to provide an overview of the distinctive characteristics and inherent challenges associated with each SSE type for Li metal anodes while also proposing potential pathways for future enhancements based on prior research findings. Full article
(This article belongs to the Special Issue Energy Conversion Materials/Devices and Their Applications)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
16 pages, 1041 KiB  
Article
Optimizing the Charging Mobility of WPT-Enabled UAV to Enhance the Stability of Solar-Powered LoRaWAN IoT
by Yujin Gong, Ikjune Yoon and Dong Kun Noh
Energies 2024, 17(7), 1617; https://doi.org/10.3390/en17071617 (registering DOI) - 28 Mar 2024
Abstract
In the majority of Internet of Things (IoT) applications, persistent and stable operation is a crucial requirement. While environmental energy-harvesting technologies can enhance IoT’s persistence, they do not guarantee stability. Therefore, we aim to address the stability challenges in solar-powered IoT (SP-IoT) by [...] Read more.
In the majority of Internet of Things (IoT) applications, persistent and stable operation is a crucial requirement. While environmental energy-harvesting technologies can enhance IoT’s persistence, they do not guarantee stability. Therefore, we aim to address the stability challenges in solar-powered IoT (SP-IoT) by employing wireless power transmission (WPT) through unmanned aerial vehicles (UAVs). This study focuses on determining the optimal charging mobility of drones for WPT to enhance the stability of nodes operating in a wide area network (WAN)-based SP-IoT environment. The proposed scheme identifies nodes with insufficient solar energy harvesting and defines the optimal charging mobility parameters (hovering position, hovering time, and moving path) to efficiently transmit the drone’s energy to these nodes in a balanced manner. The experimental results confirm that the proposed scheme significantly improves the stability of solar-powered IoT nodes by optimally utilizing the limited energy of the drone. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
20 pages, 7916 KiB  
Review
Porous High-Entropy Oxide Anode Materials for Li-Ion Batteries: Preparation, Characterization, and Applications
by Lishan Dong, Yihe Tian, Chang Luo, Weimin Zhao, Chunling Qin and Zhifeng Wang
Materials 2024, 17(7), 1542; https://doi.org/10.3390/ma17071542 (registering DOI) - 28 Mar 2024
Abstract
High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the [...] Read more.
High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the kinetic slow diffusion effect, and the electrochemical “cocktail effect”), leading to excellent cycling stability. Although the number of articles on the study of HEO materials has increased significantly, the latest research progress in porous HEO materials in the lithium-ion battery field has not been systematically summarized. This review outlines the progress made in recent years in the design, synthesis, and characterization of porous HEOs and focuses on phase transitions during the cycling process, the role of individual elements, and the lithium storage mechanisms disclosed through some advanced characterization techniques. Finally, the future outlook of HEOs in the energy storage field is presented, providing some guidance for researchers to further improve the design of porous HEOs. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
24 pages, 8832 KiB  
Article
Comprehensive Analysis of Lung Adenocarcinoma and Brain Metastasis through Integrated Single-Cell Transcriptomics
by Vanessa G. P. Souza, Nikita Telkar, Wan L. Lam and Patricia P. Reis
Int. J. Mol. Sci. 2024, 25(7), 3779; https://doi.org/10.3390/ijms25073779 (registering DOI) - 28 Mar 2024
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional [...] Read more.
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell–cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies. Full article
(This article belongs to the Special Issue Advanced Research on the Immune Microenvironment in Tumors)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
11 pages, 1231 KiB  
Article
Lower Limit of Normality of Segmental Multilayer Longitudinal Strain in Healthy Adult Subjects
by Liviu Moraru, Oana Mirea, Despina Toader, Mihaela Berceanu, Sorina Soldea, Alexandru Munteanu, Ionu? Donoiu and Victor Raicea
J. Cardiovasc. Dev. Dis. 2024, 11(4), 102; https://doi.org/10.3390/jcdd11040102 (registering DOI) - 28 Mar 2024
Abstract
Speckle tracking echocardiography is an advanced imaging technique that allows for a more detailed assessment of cardiac global and regional function. Reference values for segmental longitudinal layered strain (subendocardial, mid-myocardial, and subepicardial) are scarce, limiting the clinical use of these measurements in clinical [...] Read more.
Speckle tracking echocardiography is an advanced imaging technique that allows for a more detailed assessment of cardiac global and regional function. Reference values for segmental longitudinal layered strain (subendocardial, mid-myocardial, and subepicardial) are scarce, limiting the clinical use of these measurements in clinical practice. Two hundred consecutive Caucasian healthy subjects (mean age = 37 ± 11 years) were enrolled in the study. The mean values of global longitudinal strain (GLS) for endocardial (Endo), mid-myocardial (Myo) and epicardial (Epi) layers were −22.9 ± 2.7, −20.0 ± 2.4 and −17.5 ± 2.1, respectively. The GLSEndo/GLSMyo ratio was 1.1 ± 0.05, while the GLSEndo/GLSEpi ratio was 1.3 ± 0.05. The apical strain-sparing ratio was >1 in 10% of the subjects (endocardium) and 7% (mid-myocardium). The lower limits for segmental LS were as follows: for endocardial LS, −10% (basal), −12% (mid), −14% (apical); for mid-myocardial LS, −10% −10% (basal), −10% (mid), −10% (apical); and for epicardial LS, −7% (basal), −8% (mid), −8% (apical). The findings of this study provide data regarding the lower limit of normality of LS for each LV segment and suggest, for practical considerations, that an LS value below 10% should be considered abnormal in any segment. Further larger studies are warranted to confirm these findings. Full article
(This article belongs to the Section Imaging)
Show Figures

Figure 1

Full article ">Full article ">
15 pages, 2906 KiB  
Article
Alleviating Salt Stress in Tomatoes through Seed Priming with Polyethylene Glycol and Sodium Chloride Combination
by Nasratullah Habibi, Naoki Terada, Atsushi Sanada and Kaihei Koshio
Stresses 2024, 4(2), 210-224; https://doi.org/10.3390/stresses4020012 (registering DOI) - 28 Mar 2024
Abstract
Tomato cultivation grapples with salt stress, disrupting growth parameters and physiological processes. High salinity levels induce osmotic stress, impacting cellular integrity and hindering metabolic activities. Salt accumulation at the root zone alters key physiological attributes, compromising overall harvestable output. Seed priming emerges as [...] Read more.
Tomato cultivation grapples with salt stress, disrupting growth parameters and physiological processes. High salinity levels induce osmotic stress, impacting cellular integrity and hindering metabolic activities. Salt accumulation at the root zone alters key physiological attributes, compromising overall harvestable output. Seed priming emerges as a potential solution to enhance plant resilience. A research gap exists in understanding the combined influence of polyethylene glycol and sodium chloride as seed priming agents under salt stress conditions. The study occurred in the Greenhouse of Laboratory Horticultural Science at Tokyo University of Agriculture. Micro Tom seeds underwent a factorial randomized design, involving five salinity and four priming treatments. Replicated ten times, totaling 200 plants, seed priming used polyethylene glycol, inducing salinity stress with sodium chloride. Meticulous measurements of growth parameters, photosynthetic traits, yield attributes, and electrolyte leakage were conducted. Statistical analyses discerned treatment effects at a 5% significance level. Seed priming, especially with ‘PEG plus NaCl’, effectively mitigated salt stress effects on tomato plants. Under severe salt stress, primed plants exhibited increased plant height, trusses, leaves, and leaf area. Photosynthetic efficiency and yield attributes demonstrated significant improvements with seed priming. Electrolyte leakage, indicative of leaf damage, was notably reduced by seed priming treatments, with ‘PEG plus NaCl’ exhibiting the highest efficacy. These results offer valuable guidance for optimizing agricultural practices in saline environments, contributing to sustainable strategies for food security amidst escalating environmental challenges. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
31 pages, 8640 KiB  
Review
Coded Excitation for Ultrasonic Testing: A Review
by Chenxin Weng, Xu Gu and Haoran Jin
Sensors 2024, 24(7), 2167; https://doi.org/10.3390/s24072167 (registering DOI) - 28 Mar 2024
Abstract
Originating in the early 20th century, ultrasonic testing has found increasingly extensive applications in medicine, industry, and materials science. Achieving both a high signal-to-noise ratio and high efficiency is crucial in ultrasonic testing. The former means an increase in imaging clarity as well [...] Read more.
Originating in the early 20th century, ultrasonic testing has found increasingly extensive applications in medicine, industry, and materials science. Achieving both a high signal-to-noise ratio and high efficiency is crucial in ultrasonic testing. The former means an increase in imaging clarity as well as the detection depth, while the latter facilitates a faster refresh of the image. It is difficult to balance these two indicators with a conventional short pulse to excite the probe, so in general handling methods, these two factors have a trade-off. To solve the above problems, coded excitation (CE) can increase the pulse duration and offers great potential to improve the signal-to-noise ratio with equivalent or even higher efficiency. In this paper, we first review the fundamentals of CE, including signal modulation, signal transmission, signal reception, pulse compression, and optimization methods. Then, we introduce the application of CE in different areas of ultrasonic testing, with a focus on industrial bulk wave single-probe detection, industrial guided wave detection, industrial bulk wave phased array detection, and medical phased array imaging. Finally, we point out the advantages as well as a few future directions of CE. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
5 pages, 188 KiB  
Editorial
Bioinorganic Chemistry of Copper: From Biochemistry to Pharmacology
by Ana Maria Da Costa Ferreira, Christelle Hureau and Gianella Facchin
Inorganics 2024, 12(4), 97; https://doi.org/10.3390/inorganics12040097 (registering DOI) - 28 Mar 2024
Abstract
Copper is an essential trace element found ubiquitously in humans [...] Full article
34 pages, 495 KiB  
Article
Fundamental Matrix, Integral Representation and Stability Analysis of the Solutions of Neutral Fractional Systems with Derivatives in the Riemann—Liouville Sense
by Hristo Kiskinov, Mariyan Milev, Slav Ivanov Cholakov and Andrey Zahariev
Fractal Fract. 2024, 8(4), 195; https://doi.org/10.3390/fractalfract8040195 (registering DOI) - 28 Mar 2024
Abstract
The paper studies a class of nonlinear disturbed neutral linear fractional systems with derivatives in the the Riemann–Liouville sense and distributed delays. First, it is proved that the initial problem for these systems with discontinuous initial functions under some natural assumptions possesses a [...] Read more.
The paper studies a class of nonlinear disturbed neutral linear fractional systems with derivatives in the the Riemann–Liouville sense and distributed delays. First, it is proved that the initial problem for these systems with discontinuous initial functions under some natural assumptions possesses a unique solution. The assumptions used for the proof are similar to those used in the case of systems with first-order derivatives. Then, with the obtained result, we derive the existence and uniqueness of a fundamental matrix and a generalized fundamental matrix for the homogeneous system. In the linear case, via these fundamental matrices we obtain integral representations of the solutions of the homogeneous system and the corresponding inhomogeneous system. Furthermore, for the fractional systems with Riemann–Liouville derivatives we introduce a new concept for weighted stabilities in the Lyapunov, Ulam–Hyers, and Ulam–Hyers–Rassias senses, which coincides with the classical stability concepts for the cases of integer-order or Caputo-type derivatives. It is proved that the zero solution of the homogeneous system is weighted stable if and only if all its solutions are weighted bounded. In addition, for the homogeneous system it is established that the weighted stability in the Lyapunov and Ulam–Hyers senses are equivalent if and only if the inequality appearing in the Ulam–Hyers definition possess only bounded solutions. Finally, we derive natural sufficient conditions under which the property of weighted global asymptotic stability of the zero solution of the homogeneous system is preserved under nonlinear disturbances. Full article
(This article belongs to the Special Issue Advances in Fractional Modeling and Computation)
14 pages, 3577 KiB  
Article
Infiltration-Based Variability of Soil Erodibility Parameters Evaluated with the Jet Erosion Test
by Aaron A. Akin, Gia Nguyen and Aleksey Y. Sheshukov
Water 2024, 16(7), 981; https://doi.org/10.3390/w16070981 (registering DOI) - 28 Mar 2024
Abstract
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes for better mitigation. It is imperative to accurately predict soil erosion [...] Read more.
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes for better mitigation. It is imperative to accurately predict soil erosion caused by overland flow processes so that soil conservation efforts can be undertaken proactively before large-scale sedimentation problems arise. Soil detachment is often described by the excess shear stress equation that contains two physical soil erodibility parameters, erodibility coefficient, and critical shear stress. These parameters are normally assumed to be constant but can change across varying soil texture classes as well as during surface runoff events due to changes in soil cohesion and potential dependency on soil moisture content. These changes may significantly affect soil erosion rates at the field and watershed scale. In this study, the erodibility parameters of three soil types (sandy loam, clay loam, and silty clay loam) were analyzed using a laboratory mini-Jet Erosion Test (JET) to determine the effect of soil sample infiltration and moisture condition. Results from the experiments depicted a dynamic relationship between the soil erodibility parameters and amount of infiltrated mass of water. Data analysis displayed that for soils of different texture critical shear stress exhibited local minimum with higher values for very dry and saturated soils, while erodibility coefficient tended to increase with the increase of mass of soil water. Utilizing these dynamic soil erodibility parameters did not result in a significant difference in soil erosion rates when compared to using the averaged soil erodibility parameters taken from the experiment but the range of potential erosion rates increases with the increase of applied sheer stress to soil surface. The erosion rates with the experiment-based coefficients were found to be higher than with the baseline WEPP-based coefficients. These results highlight the importance of evaluating the effect of intrastorm dependent factors during surface runoff events, such as antecedent soil moisture content, time to peak from the start of runoff, soil cohesion, etc., on soil erodibility parameters to accurately calculate erosion rates, especially for initially dry soils or during earlier stages of surface runoff when critical shear stresses were highly affected. Further assessment of such factors with JET or other laboratory and field tests is recommended. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
23 pages, 8336 KiB  
Review
Stem Cell Therapy against Ischemic Heart Disease
by I-Ting Tsai and Cheuk-Kwan Sun
Int. J. Mol. Sci. 2024, 25(7), 3778; https://doi.org/10.3390/ijms25073778 (registering DOI) - 28 Mar 2024
Abstract
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable [...] Read more.
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable angina, to myocardial death, that is, the immediate life-threatening condition of myocardial infarction. Even though patients may survive myocardial infarction, the resulting ischemia-reperfusion injury triggers a cascade of inflammatory reactions and oxidative stress that poses a significant threat to myocardial function following successful revascularization. Moreover, despite evidence suggesting the presence of cardiac stem cells, the fact that cardiomyocytes are terminally differentiated and cannot significantly regenerate after injury accounts for the subsequent progression to ischemic cardiomyopathy and ischemic heart failure, despite the current advancements in cardiac medicine. In the last two decades, researchers have realized the possibility of utilizing stem cell plasticity for therapeutic purposes. Indeed, stem cells of different origin, such as bone-marrow- and adipose-derived mesenchymal stem cells, circulation-derived progenitor cells, and induced pluripotent stem cells, have all been shown to play therapeutic roles in ischemic heart disease. In addition, the discovery of stem-cell-associated paracrine effects has triggered intense investigations into the actions of exosomes. Notwithstanding the seemingly promising outcomes from both experimental and clinical studies regarding the therapeutic use of stem cells against ischemic heart disease, positive results from fraud or false data interpretation need to be taken into consideration. The current review is aimed at overviewing the therapeutic application of stem cells in different categories of ischemic heart disease, including relevant experimental and clinical outcomes, as well as the proposed mechanisms underpinning such observations. Full article
(This article belongs to the Special Issue Stem Cell Therapy: New Insight for Human Diseases)
Show Figures

Figure 1

Full article ">Full article ">Full article ">
17 pages, 5957 KiB  
Article
Inertial and Flexible Resistive Sensor Data Fusion for Wearable Breath Recognition
by Mehdi Zabihi, Bhawya, Parikshit Pandya, Brooke R. Shepley, Nicholas J. Lester, Syed Anees, Anthony R. Bain, Simon Rondeau-Gagné and Mohammed Jalal Ahamed
Appl. Sci. 2024, 14(7), 2842; https://doi.org/10.3390/app14072842 (registering DOI) - 28 Mar 2024
Abstract
This paper proposes a novel data fusion technique for a wearable multi-sensory patch that integrates an accelerometer and a flexible resistive pressure sensor to accurately capture breathing patterns. It utilizes an accelerometer to detect breathing-related diaphragmatic motion and other body movements, and a [...] Read more.
This paper proposes a novel data fusion technique for a wearable multi-sensory patch that integrates an accelerometer and a flexible resistive pressure sensor to accurately capture breathing patterns. It utilizes an accelerometer to detect breathing-related diaphragmatic motion and other body movements, and a flex sensor for muscle stretch detection. The proposed sensor data fusion technique combines inertial and pressure sensors to eliminate nonbreathing body motion-related artifacts, ensuring that the filtered signal exclusively conveys information pertaining to breathing. The fusion technique mitigates the limitations of relying solely on one sensor’s data, providing a more robust and reliable solution for continuous breath monitoring in clinical and home environments. The sensing system was tested against gold-standard spirometry data from multiple participants for various breathing patterns. Experimental results demonstrate the effectiveness of the proposed approach in accurately monitoring breathing rates, even in the presence of nonbreathing-related body motion. The results also demonstrate that the multi-sensor patch presented in this paper can accurately distinguish between varying breathing patterns both at rest and during body movements. Full article
(This article belongs to the Special Issue Human Activity Recognition (HAR) in Healthcare, 2nd Edition)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
22 pages, 11310 KiB  
Review
A Study on the Design and Implementation Technologies of EVA at the China Space Station
by Xuedong Li, Yuan Xie, Yumo Tian and Fengjiang An
Aerospace 2024, 11(4), 264; https://doi.org/10.3390/aerospace11040264 (registering DOI) - 28 Mar 2024
Abstract
Extravehicular activity (EVA) is a key point and a difficult point for manned spaceflight tasks, as well as an inevitable trend in the development of the manned spaceflight industry. Equipment maintenance, load installation, and extravehicular routing inspection via EVA on the track are [...] Read more.
Extravehicular activity (EVA) is a key point and a difficult point for manned spaceflight tasks, as well as an inevitable trend in the development of the manned spaceflight industry. Equipment maintenance, load installation, and extravehicular routing inspection via EVA on the track are necessary to guarantee the safety and reliability of the long-term in-orbit operation of the China Space Station. In this paper, a comprehensive analysis was conducted on the features of multiple tasks, diverse working modes, and strong systematic coupling during the EVA of the China Space Station (CSS). On this basis, the design, implementation technologies’ development, and in-orbit performance evaluation during EVA were expounded. In the space station system, an extravehicular reliability verification and evaluation system suitable for the requirement for EVA under the conditions of China’s multi-mission, multi-module combination, and repairable spacecraft was constructed. Finally, the in-orbit EVA implementation of the China Space Station since the launch of the core module to the present was summarized, and the subsequent application of the extravehicular technologies in manned lunar landing projects and optical modules was anticipated. Full article
(This article belongs to the Special Issue Advanced Spacecraft/Satellite Technologies)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
24 pages, 6864 KiB  
Article
Evaluation of the Impact of Climate Change on the Water Balance of the Mixteco River Basin with the SWAT Model
by Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bola?os-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas
Hydrology 2024, 11(4), 45; https://doi.org/10.3390/hydrology11040045 (registering DOI) - 28 Mar 2024
Abstract
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological balance using the SWAT (Soil and Water Assessment [...] Read more.
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological balance using the SWAT (Soil and Water Assessment Tool) hydrological model in the Mixteco River Basin (MRB), Oaxaca, Mexico. Temperature and precipitation were predicted with the projections of global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6); the bias was corrected using CMhyd software, and then the best performing GCM was selected for use in the SWAT model. According to the GCM MPI-ESM1-2-LR, precipitation might decrease by between 83.71 mm and 225.83 mm, while temperature might increase by between 2.57 °C and 4.77 °C, causing a greater atmospheric evaporation demand that might modify the hydrological balance of the MRB. Water yield might decrease by 47.40% and 61.01% under the climate scenarios SP245 and SSP585, respectively. Therefore, adaptation and mitigation measures are needed to offset the adverse impact of climate change in the MRB. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
25 pages, 5740 KiB  
Review
New Light on Plants and Their Chemical Compounds Used in Polish Folk Medicine to Treat Urinary Diseases
by Beata Olas, Waldemar Ró?ański, Karina Urbańska, Natalia S?awińska and Magdalena Bry?
Pharmaceuticals 2024, 17(4), 435; https://doi.org/10.3390/ph17040435 (registering DOI) - 28 Mar 2024
Abstract
This review contains the results of Polish (Central Europe) ethnomedical studies that describe the treatment of urinary tract diseases with wild and cultivated plants. The study includes only the plants that are used to treat the urinary tract, excluding prostate diseases. A review [...] Read more.
This review contains the results of Polish (Central Europe) ethnomedical studies that describe the treatment of urinary tract diseases with wild and cultivated plants. The study includes only the plants that are used to treat the urinary tract, excluding prostate diseases. A review of the literature was carried out to verify the pharmacological use of the plants mentioned in the interviews. Based on this, the study reviews the pharmacological activities of all the recorded species and indicates their most important chemical compounds. Fifty-three species (belonging to 30 families) were selected for the study. The Compositae (eight species), Rosaceae (six species), and Apiaceae (six species) are the most common families used in the treatment of urinary diseases in Polish folk medicine. Both in vitro and in vivo studies have confirmed that many of these plant species have beneficial properties, such as diuretic, antihyperuricemic, antimicrobial, and anti-inflammatory activity, or the prevention of urinary stone formation. These effects are exerted through different mechanisms, for example, through the activation of bradykinin B2 receptors, inhibition of xanthine oxidase, or inhibition of Na+-K+ pump. Many plants used in folk medicine are rich in phytochemicals with proven effectiveness against urinary tract diseases, such as rutin, arbutin, or triterpene saponins. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Full article ">Full article ">Full article ">
23 pages, 1420 KiB  
Article
Solving the Advection Diffusion Reaction Equations by Using the Enhanced Higher-Order Unconditionally Positive Finite Difference Method
by Ndivhuwo Ndou, Phumlani Dlamini and Byron Alexander Jacobs
Mathematics 2024, 12(7), 1009; https://doi.org/10.3390/math12071009 (registering DOI) - 28 Mar 2024
Abstract
In this paper, the enhanced higher-order unconditionally positive finite difference method is developed to solve the linear, non-linear and system advection diffusion reaction equations. Investigation into the effectiveness and efficiency of the proposed method is carried out by calculating the convergence rate, error [...] Read more.
In this paper, the enhanced higher-order unconditionally positive finite difference method is developed to solve the linear, non-linear and system advection diffusion reaction equations. Investigation into the effectiveness and efficiency of the proposed method is carried out by calculating the convergence rate, error and computational time. A comparison of the solutions obtained by the enhanced higher-order unconditionally positive finite difference and exact solution is conducted for validation purposes. The numerical results show that the developed method reduced the time taken to solve the linear and non-linear advection diffusion reaction equations as compared to the results obtained by the higher-order unconditionally positive finite difference method. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
21 pages, 46311 KiB  
Article
Study on the Particle Deposition Characteristics of Transpiration Cooling Structures with Sintered Wire Mesh
by Zhe Zhang, Xiang Luo and Yubo Peng
Micromachines 2024, 15(4), 452; https://doi.org/10.3390/mi15040452 (registering DOI) - 28 Mar 2024
Abstract
Transpiration cooling based on a porous structure has an ultra-high cooling efficiency, which is expected to be one solution to improve the cooling technology of aero-engine turbine blades. However, particulate impurities in the gas flow channel continue to deposit on the surface of [...] Read more.
Transpiration cooling based on a porous structure has an ultra-high cooling efficiency, which is expected to be one solution to improve the cooling technology of aero-engine turbine blades. However, particulate impurities in the gas flow channel continue to deposit on the surface of turbine components, blocking cooling holes, which causes great harm to the cooling of turbine blades. In this study, a sintered metal mesh plate was selected as the transpiration cooling structure, and the evolution of particle deposition quality and deposition thickness on the transpiration cooling surface with time, as well as spatial distributions of particle deposition thickness at different times, were explored through experimental and simulation methods. The results showed that, with the increase in spray time, deposition quality and maximum deposition thickness of the transpiration cooling surface gradually increased. Along the main-stream direction, when spray time was short, deposition thickness was higher in a narrow range upstream of the experimental specimen. With the increase in spray time, deposition thickness gradually decreased along the direction of the transpiration cooling mainstream. In the spanwise direction, when spray time was very short, deposition thickness in the spanwise direction was more consistent and, after spray time increased further, the deposition thickness distribution began to tend to a “∩”-type distribution. It can be seen from the simulation results of the metal wire mesh particle deposition that particles were easily deposited on the windward side of the metal wire in the main-stream direction, which agreed with the experimental distribution characteristics of the metal wire mesh deposition. Moreover, the increase in blowing ratio reduced the deposition of particles on the wall of the metal wire mesh. Full article
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
17 pages, 8502 KiB  
Article
The Influence of Nitrogen Partial Pressure on the Microstructure and Mechanical Properties of HfNbTaTiVZr High-Entropy Nitride Coating Deposited via Direct Current Cathodic Vacuum Arc Deposition
by Tim Krülle, Martin Kuczyk, Michael Leonhardt, Otmar Zimmer and Christoph Leyens
Coatings 2024, 14(4), 398; https://doi.org/10.3390/coatings14040398 (registering DOI) - 28 Mar 2024
Abstract
In recent years, high-entropy alloys have attracted increasing scientific interest. Due to their promising combination of properties, such as high hardness and high temperature stability, they are attractive for use as tool coatings for machining applications, to give but one example. Previous studies [...] Read more.
In recent years, high-entropy alloys have attracted increasing scientific interest. Due to their promising combination of properties, such as high hardness and high temperature stability, they are attractive for use as tool coatings for machining applications, to give but one example. Previous studies often focused on layer deposition using magnetron sputtering. Comparatively little research has been carried out to date on coating deposition using direct current cathodic vacuum arc deposition (CAE), with higher achievable rates and almost completely ionized plasmas. The aim of this work is to investigate (HfNbTaTiZr)N-coatings produced by CAE. The nitrogen content was varied and the effects on the coating properties were investigated. Changing the N2/(N2 + Ar) ratio between 0.1 and 1.0 and varying the working pressure in the chamber from 2 Pa to 5 Pa resulted in variations of the nitrogen content of the coatings, ranging from 30 at% to 50 at%. Although different microstructures of the coatings were obtained, there was only a minor influence on the hardness and Young’s modulus. Full article
(This article belongs to the Special Issue High Entropy Alloy Films)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">
19 pages, 3980 KiB  
Article
Estimation of Millet Aboveground Biomass Utilizing Multi-Source UAV Image Feature Fusion
by Zhongyu Yang, Zirui Yu, Xiaoyun Wang, Wugeng Yan, Shijie Sun, Meichen Feng, Jingjing Sun, Pengyan Su, Xinkai Sun, Zhigang Wang, Chenbo Yang, Chao Wang, Yu Zhao, Lujie Xiao, Xiaoyan Song, Meijun Zhang and Wude Yang
Agronomy 2024, 14(4), 701; https://doi.org/10.3390/agronomy14040701 (registering DOI) - 28 Mar 2024
Abstract
Aboveground biomass (AGB) is a key parameter reflecting crop growth which plays a vital role in agricultural management and ecosystem assessment. Real-time and non-destructive biomass monitoring is essential for accurate field management and crop yield prediction. This study utilizes a multi-sensor-equipped unmanned aerial [...] Read more.
Aboveground biomass (AGB) is a key parameter reflecting crop growth which plays a vital role in agricultural management and ecosystem assessment. Real-time and non-destructive biomass monitoring is essential for accurate field management and crop yield prediction. This study utilizes a multi-sensor-equipped unmanned aerial vehicle (UAV) to collect remote sensing data during critical growth stages of millet, including spectral, textural, thermal, and point cloud information. The use of RGB point cloud data facilitated plant height extraction, enabling subsequent analysis to discern correlations between spectral parameters, textural indices, canopy temperatures, plant height, and biomass. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models were constructed to evaluate the capability of different features and integrated multi-source features in estimating the AGB. Findings demonstrated a strong correlation between the plant height derived from point cloud data and the directly measured plant height, with the most accurate estimation of millet plant height achieving an R2 of 0.873 and RMSE of 7.511 cm. Spectral parameters, canopy temperature, and plant height showed a high correlation with the AGB, and the correlation with the AGB was significantly improved after texture features were linearly transformed. Among single-factor features, the RF model based on textural indices showcased the highest accuracy in estimating the AGB (R2 = 0.698, RMSE = 0.323 kg m−2, and RPD = 1.821). When integrating two features, the RF model incorporating textural indices and canopy temperature data demonstrated optimal performance (R2 = 0.801, RMSE = 0.253 kg m−2, and RPD = 2.244). When the three features were fused, the RF model constructed by fusing spectral parameters, texture indices, and canopy temperature data was the best (R2 = 0.869, RMSE = 0.217 kg m−2, and RPD = 2.766). The RF model based on spectral parameters, texture indices, canopy temperature, and plant height had the highest accuracy (R2 = 0.877, RMSE = 0.207 kg m−2, and RPD = 2.847). In this study, the complementary and synergistic effects of multi-source remote sensing data were leveraged to enhance the accuracy and stability of the biomass estimation model. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">Full article ">

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news
news