# Superconductors without Symmetry Breaking

## Abstract

**:**

## 1. Introduction

## 2. Vortices in Type-III Superconductors

## 3. Effective Gauge Theory Description of Type-III Superconductors

## Funding

## Conflicts of Interest

## References

- Tinkham, M. Introduction to Superconductivity; Dover Publications: New York, NY, USA, 1996. [Google Scholar]
- Shimano, R.; Tsuji, N. Higgs Mode in Superconductors. Annu. Rev. Condens. Matter Phys.
**2020**, 11, 103–124. [Google Scholar] [CrossRef] - Volkov, A.F.; Kogan, S.M. Collisionless relaxation of the energy gap in superconductors. Zh. Eksp. Teor. Fiz.
**1973**, 65, 2038–2046. [Google Scholar] - Littlewood, P.B.; Varma, C.M. Amplitude collective modes in superconductors and their coupling to charge-density waves. Phys. Rev. B
**1982**, 26, 4883–4893. [Google Scholar] [CrossRef] - Matsunaga, R.; Hamada, Y.I.; Makise, K.; Uzawa, Y.; Terai, H.; Wang, Z.; Shimano, R. Higgs Amplitude Mode in the BCS Superconductors Nb1-x Tix N induced by terahertz pulse excitation. Phys. Rev. Lett.
**2013**, 111, 057002. [Google Scholar] [CrossRef] [PubMed] - Saipuddin, S.F.; Hashim, A.; Suhaimi, N.E. Type I and Type II Superconductivity. In Superconducting Materials; Slimani, Y., Hannachi, E., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Onnes, H.K. The resistance of pure mercury at helium temperatures. Comm. Leiden.
**1911**, 28, 120. [Google Scholar] - Abrikosov, A. The magnetic properties of superconducting alloys. J. Phys. Chem. Solids
**1957**, 2, 199–208. [Google Scholar] [CrossRef] - Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. Am. Phys. Soc.
**1957**, 108, 1175–1204. [Google Scholar] [CrossRef] - Diamantini, M.C.; Sodano, P.; Trugenberger, C.A. Superconductors with topological order. Eur. Phys. J. B
**2006**, 53, 19–22. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A. Higgsless superconductivity from topological defects in compact BF terms. Nucl. Phys. B
**2015**, 891, 401–419. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Chen, S.Z.; Lu, Y.J.; Liang, C.T.; Vinokur, V.M. Type-III superconductivity. Adv. Sci.
**2023**, 1, 2206523. [Google Scholar] [CrossRef] - Berezinskii, V.L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP
**1970**, 32, 493–500. [Google Scholar] - Kosterlitz, J.M.; Thouless, D.J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C Solid State Phys.
**1972**, 5, L124–L126. [Google Scholar] [CrossRef] - Goldman, A.M. The Berezinskii-Kosterlitz-Thouless Transition in Superconductors. In 40 Years of Berezinskii-Kosterlitzthouless Theory; Jorge, J., Ed.; World Scientific Publishing Co.: Singapore, 2013; pp. 135–160. [Google Scholar]
- Minnhagen, P. The two-dimensional Coulomb gas, vortex un- binding and superfluid-superconducting films. Rev. Mod. Phys.
**1987**, 59, 1001–1066. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. How planar superconductors cure their infrared divergences. J. High Energy Phys.
**2022**, 2022, 1–10. [Google Scholar] [CrossRef] - Diamantini, M.C.; Gammaitoni, L.; Trugenberger, C.A.; Vinokur, V.M. Vogel-Fulcher-Tamman criticality of 3D superinsulators. Sci. Rep.
**2018**, 8, 15718. [Google Scholar] [CrossRef] [PubMed] - Deser, S.; Jackiw, R.; Templeton, S. Three-Dimensional Massive Gauge Theories. Phys. Rev. Lett.
**1982**, 48, 975–978. [Google Scholar] [CrossRef] - Allen, T.J.; Bowick, M.J.; Lahiri, A. Topological mass generation in 3+ 1 dimensions. Mod. Phys. Lett.
**1991**, A6, 559. [Google Scholar] [CrossRef] - Trugenberger, C.A. Superinsulators, Bose Metals and High-Tc Superconductors: The Quantum Physics of Emergent Magnetic Monopoles; World Scientific: Singapore, 2022. [Google Scholar]
- Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Confinement and asymptotic freedom with Cooper pairs. Commun. Phys.
**2018**, 1, 77. [Google Scholar] [CrossRef] - Diamantini, M.C.; Gammaitoni, L.; Trugenberger, C.A.; Vinokur, V.M. The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop. J. Supercond. Nov. Magn.
**2018**, 32, 47–51. [Google Scholar] [CrossRef] - Diamantini, M.; Mironov, A.; Postolova, S.; Liu, X.; Hao, Z.; Silevitch, D.; Kopelevich, Y.; Kim, P.; Trugenberger, C.; Vinokur, V. Bosonic topological insulator intermediate state in the superconductor-insulator transition. Phys. Lett. A
**2020**, 384, 126570. [Google Scholar] [CrossRef] - Wen, X.-G. Quantum order: A quantum entanglement of many particles. Phys. Lett. A
**2002**, 300, 175–181. [Google Scholar] [CrossRef] - Chen, X.; Liu, Z.-X.; Wen, X.-G. Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations. Phys. Rev. B
**2011**, 84, 235141. [Google Scholar] [CrossRef] - Diamantini, M.; Sodano, P.; Trugenberger, C. Gauge theories of Josephson junction arrays. Nucl. Phys. B
**1996**, 474, 641–677. [Google Scholar] [CrossRef] - Cho, G.Y.; Moore, J.E. Topological BF field theory description of topological insulators. Ann. Phys.
**2011**, 326, 1515–1535. [Google Scholar] [CrossRef] - Jackiw, R.; Templeton, S. How super-renormalizable interactions cure their infrared divergences. Phys. Rev. D
**1981**, 23, 2291–2304. [Google Scholar] [CrossRef] - Jaeger, H.M.; Haviland, D.B.; Orr, B.G.; Goldman, A.M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B
**1989**, 40, 182–196. [Google Scholar] [CrossRef] [PubMed] - Hebard, A.F.; Paalanen, M.A. Magnetic-field-tuned superconductor-insulator transition in two-dimensional films. Phys. Rev. Lett.
**1990**, 65, 927–930. [Google Scholar] [CrossRef] [PubMed] - Goldman, A.M. Superconductor-insulator transitions. Int. J. Mod. Phys. B
**2010**, 24, 4081–4101. [Google Scholar] [CrossRef] - Sacepe, B.; Chapelier, C.; Baturina, T.I.; Vinokur, V.M.; Baklanov, M.R.; Sanquer, M. Disorder-Induced Inhomogeneities of the Superconducting State Close to the Superconductor-Insulator Transition. Phys. Rev. Lett.
**2008**, 101, 157006. [Google Scholar] [CrossRef] [PubMed] - Sacepe, B.; Dubouchet, T.; Chapelier, C.; Sanquer, M.; Ovadia, M.; Shahar, D.; Feigel’man, M.; Ioffe, L. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys.
**2011**, 7, 239–244. [Google Scholar] [CrossRef] - Kowal, D.; Ovadyahu, Z. Disorder induced granularity in an amorphous superconductor. Solid State Commun.
**1994**, 90, 783–786. [Google Scholar] [CrossRef] - Fazio, R.; Sch?n, G. Charge and vortex dynamics in arrays of tunnel junctions. Phys. Rev. B
**1991**, 43, 5307–5320. [Google Scholar] [CrossRef] [PubMed] - Fazio, R.; Van Der Zant, H. Quantum phase transitions and vortex dynamics in superconducting netrworks. Phys. Rep.
**2001**, 355, 235–334. [Google Scholar] [CrossRef] - Zhang, X.; Palevski, A.; Kapitulnik, A. Anomalous metals: From “failed superconductor” to “failed insulator”. Proc. Natl. Acad. Sci. USA
**2022**, 119, e2202496119. [Google Scholar] [CrossRef] [PubMed] - Parra, C.; Niestemski, F.C.; Contryman, A.W.; Giraldo-Gallo, P.; Geballe, T.H.; Fisher, I.R.; Manoharan, H.C. Signatures of two-dimensional superconductivity emerging within a three-dimensional host superconductor. Proc. Natl. Acad. Sci. USA
**2021**, 118, e2017810118. [Google Scholar] [CrossRef] [PubMed] - Pelc, D.; Vu?kovi?, M.; Grbi?, M.S.; Po?ek, M.; Yu, G.; Sasagawa, T.; Greven, M.; Bari?i?, N. Emergence of superconductivity in the cuprates via a universal percolation process. Nat. Commun.
**2018**, 9, 4327. [Google Scholar] [CrossRef] [PubMed] - Likharev, K.K. Superconducting weak links. Rev. Mod. Phys.
**1979**, 51, 101. [Google Scholar] [CrossRef] - Kunchur, M.N.; Liang, M.; Gurevich, A. The vortex explosion transition. AIP Conf. Proc.
**2013**, 19, 1512. [Google Scholar] - Trugenberger, C.A. Gauge Theories of Josephson Junction Arrays: Why Disorder Is Irrelevant for the Electric Response of Disordered Superconducting Films. Condens. Matter
**2023**, 8, 85. [Google Scholar] [CrossRef] - Golubev, D.S.; Zaikin, A.D. Quantum tunneling of the order parameter in superconducting nanowires. Phys. Rev. B
**2001**, 64, 014504. [Google Scholar] [CrossRef] - Golubev, D.S.; Zaikin, A.D. Fluctuations and Superconductivity in One Dimension. Phys. Rep.
**2008**, 464, 84–102. [Google Scholar] - Ioffe, L.B.; Narozhny, B.N. Resistance of Josephson-junction arrays at low temperatures. Phys. Rev. B
**1998**, 58, 11449–11457. [Google Scholar] [CrossRef] - Bottcher, C.G.L.; Nichele, F.; Shabani, J.; Palmstrom, C.J.; Marcus, C. MDynamical vortex transitions in a gate-tunable Josephson junction array. arXiv
**2022**, arXiv:2212.08651. [Google Scholar] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Superconductor-insulator transition in the absence of disorder. Phys. Rev. B
**2021**, 103, 174516. [Google Scholar] [CrossRef] - Wilczek, F. Disassembling anyons. Phys. Rev. Lett.
**1992**, 69, 132–135. [Google Scholar] [CrossRef] [PubMed] - Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. B
**1959**, 115, 485–491. [Google Scholar] [CrossRef] - Aharonov, Y.; Casher, A. Topological Quantum Effects for Neutral Particles. Phys. Rev. Lett.
**1984**, 53, 319–321. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Quantum magnetic monopole condensate. Commun. Phys.
**2021**, 4, 25. [Google Scholar] [CrossRef] - Trugenberger, C.; Diamantini, M.C.; Poccia, N.; Nogueira, F.S.; Vinokur, V.M. Magnetic Monopoles and Superinsulation in Josephson Junction Arrays. Quantum Rep.
**2020**, 2, 388–399. [Google Scholar] [CrossRef] - Kaufmann, L.H. Formal Knot Theory; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Bergeron, M.; Semenoff, G.W.; Szabo, R.J. Canonical BF-type topological field theory and fractional statistics of strings. Nucl. Phys. B
**1995**, 437, 695–721. [Google Scholar] [CrossRef] - Wilczek, F. Fractional Statistics and Anyon Superconductivity; World Scientific: Singapore, 1990. [Google Scholar]
- Dunne, G.V.; Jackiw, R.; Trugenberger, C.A. “Topological” (Chern-Simons) quantum mechanics. Phys. Rev. D
**1990**, 41, 661–666. [Google Scholar] [CrossRef] - Julia, B.; Toulouse, G. The many-defect problem: Gauge-like variables for ordered media containing defects. Phys. Lett.
**1979**, 40, 396. [Google Scholar] [CrossRef] - Brezin, E.; Zinn-Justin, J. Fields, Strings and Critical Phenomena; North-Holland: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Quevedo, F.; Trugenberger, C.A. Phases of antisymmetric tensor field theories. Nucl. Phys. B
**1997**, 501, 143–172. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Topological Nature of High Temperature Superconductivity. Adv. Quantum Technol.
**2021**, 4, 135. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Effective magnetic monopole mechanism for localized electron pairing in HTS. Front. Phys.
**2022**, 10, 909310. [Google Scholar] [CrossRef]

**Figure 2.**Scaling of the resistance. (

**a**) Four-terminal dc resistance measurements resistance measurements of the 20-nm-thick NbN film. The red and blue curves correspond to the BKT fitting and VFT fitting of the experimental data, respectively. The gray points mark experimental data deviating from the fits. The subfigure illustrates a sketch of the four-terminal dc resistance measurements of NbN and NbTiN films. (

**b**) Four-terminal DC resistance measurements of a 20-nm-thick NbN film. The red and blue curves correspond to the BKT fitting and VFT fitting of the experimental data, respectively. The three data points marked gray show a noticeable deviation from the fits. From Advance Science, accessed on 25 March 2023, https://doi.org/10.1002/advs.202206523.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

? 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Diamantini, M.C.
Superconductors without Symmetry Breaking. *Condens. Matter* **2024**, *9*, 21.
https://doi.org/10.3390/condmat9020021

**AMA Style**

Diamantini MC.
Superconductors without Symmetry Breaking. *Condensed Matter*. 2024; 9(2):21.
https://doi.org/10.3390/condmat9020021

**Chicago/Turabian Style**

Diamantini, Maria Cristina.
2024. "Superconductors without Symmetry Breaking" *Condensed Matter* 9, no. 2: 21.
https://doi.org/10.3390/condmat9020021